Stereotype-based Versus Personal-based Filtering Rules in Information Filtering Systems
نویسندگان
چکیده
Rule-based information filtering systems maintain user profiles where the profile consists of a set of filtering rules expressing the user’s information filtering policy. Filtering rules may refer to various attributes of the data items subject to the filtering process. In personal rulebased filtering systems, each user has his/her own personal filtering rules. In stereotype rule-based filtering systems, a user is assigned to a group of similar users (his/her stereotype) from which he/she inherits the stereotype’s filtering profile. This study compares the effectiveness of the two alternative rule-based filtering methods: stereotype-based rules versus personal rules. We conducted a comparison between filtering effectiveness when using the personal rules or when using the stereotype-based rules. Although, intuitively, personal filtering rules seem to be more effective because each user has his own tailored rules, our comparative study reveals that stereotype filtering rules yield more effective results. We believe that this is because users find it difficult to evaluate their filtering preferences accurately. The results imply that by using a stereotype it is possible not only to overcome the problem of user effort required to generate a manual rule-based profile, but at the same time even provide a better initial user profile.
منابع مشابه
A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملInformation Filtering: Personal Profile Usable as Stereotype Profile?
This paper describes a research that gives an indication of the use of personal profiling techniques for stereotype profiling. A stereotype might be seen as a ‘single person’ that represents a group and so personal filtering might be used for stereotype filtering. To test this, a group of 6 people used an adapted internet browser with a single personal profile and ranked a set of documents afte...
متن کاملTransmission Reliability Cost Allocation Based on Contingency Filtering by Economic Indices in Large Power Systems
In this paper, the new approach for the transmission reliability cost allocation (TRCA) problem is proposed. In the conventional TRCA problem, for calculating the contribution of each user (generators & loads or contracts) in the reliability margin of each transmission line, the outage analysis is performed for all system contingencies. It is obvious that this analysis is very time-consuming fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JASIST
دوره 54 شماره
صفحات -
تاریخ انتشار 2003